12-26 23:18:37 浏览次数:807次 栏目:高二数学
例10已知双曲线x2-3y2 = 3的右焦点为F,右准线为L,直线y=kx+3通过以F为焦点,L为相应准线的椭圆中心,求实数k的取值范围.
分析:由于椭圆中心不在原点,故先设椭圆中心,再找出椭圆中各量的关系,再利用椭圆离心率0<1,建立相关不等式关系求解.< p>
解:依题意得F的坐标为(2,0),L:x = 32
设椭圆中心为(m,0),则 m-2 =c和 m-32 = a2c
两式相除得: m-2m-32 = c2a2 = e2
∵0<1,∴0<1,解得m>2,
又∵当椭圆中心(m,0)在直线y=kx+3上,
∴0 = km+3 ,即m = - 3k ,
∴- 3k >2,解得-32 <0< p>
上面是处理解析几何中求参数取值范围问题的几种思路和求法,希望通过以上的介绍,能让同学们了解这类问题的常用求法,并能认真体会、理解掌握,在以后的学习过程中能够灵活运用。
,解析几何中求参数取值范围的方法tag: 暂无联系方式 高二数学,高二数学学习方法介绍,高二学习计划,高中学习 - 高二学习 - 高二数学