12-26 23:19:12 浏览次数:860次 栏目:高一数学
【概念及知识点】
一、圆的方程
X²+Y²=1 ,圆心O(0,0)被称为1单位圆
x²+y²=r²,圆心O(0,0),半径r;
(x-a)²+(y-b)²=r²,圆心O(a,b),半径r。
确定圆方程的条件
圆的标准方程中(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为:
根据题意,设所求的圆的标准方程(x-a)²+(y-b)²=r²;
根据已知条件,建立关于a、b、r的方程组;
解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程。
二、方程推导
(x-a)²+(y-b)²=r²
在平面直角坐标系中,设有圆O,圆心O(a,b) 点P(x,y)是圆上任意一点。
圆是平面到定点距离等于定长的所有点的集合。
所以√[(x-a)²+(y-b)²]=r
两边平方,得到
即(x-a)²+(y-b)²=r²
三、一般式
x²+y²+Dx+Ey+F=0
此方程可用于解决两圆的位置关系
配方化为标准方程:(x+D/2)².+(y+E/2)²=( (D²+E²-4F)/4 )
其圆心坐标:(-D/2,-E/2)
半径为r=[√(D²+E²-4F)]/2
此方程满足为圆的方程的条件是:
D²+E²-4F>0
若不满足,则不可表示为圆的方程
已知直径的两个端点坐标A(m,n)B(p,q)设圆上任意一点C(x,
Y)。则有:向量AC*BC=0 可推出方程:(X-m)*(X-p)+(Y-n)*(Y-q)=0 再整理即可得出一般方程。
四、点与圆
点P(X1,Y1) 与圆 (x-a)^2+(y-b) ^2=r^2的位置关系:
⑴当(x1-a)²+(y1-b) ²>r²时,则点P在圆外。
⑵当(x1-a)+(y1-b) ²=r²时,则点P在圆上。
⑶当(x1-a)²+(y1-b) ²
五、圆与直线
平面内,直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x²+y²+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b²-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b²-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b²-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x²+y²+Dx+Ey+F=0化为 (x-a)²+(y-b) ²=r²。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/A
当x1
半径r,直径d
在直角坐标系中,圆的标准方程为:(x-a)²+(y-b)²=r²;
x²+y²+Dx+Ey+F=0
=> (x+D/2)²+(y+E/2)²=(D²+E²-4F)/4
=> 圆心坐标为(-D/2,-E/2)
其实只要保证X方Y方前系数都是1
就可以直接判断出圆心坐标为(-D/2,-E/2)
这可以作为一个结论运用的
且r=根号(圆心坐标的平方和-F)
【练习题】
1.若直线4x-3y-2=0与圆x²+y²-2ax+4y+a2-12=0总有两个不同交点,则a的取值范围是( )
A.-3<a<7 B.-6<a<4C.-7<a<3 D.-21<a<19
2.圆(x-3)²+(y-3)²=9上到直线3x+4y-11=0的距离等于1的点有( )
A.1个 B.2个 C.3个 D.4个
3.过点P(2,1)且与圆x²+y²-2x+2y+1=0相切的直线的方程为______
4.设集合m={(x,y)|x²+y²≤25},N={(x,y)|(x-a)²+y²≤9},若M∪N=M,则实数a的取值范围是_____
5.已知P(3,0)是圆x²+y²-8x-2y+12=0内一点则过点P的最短弦所在直线方程是( ),过点P的最长弦所在直线方程是______
【参考答案】
1.B
2.C
3.x=2或3x-4y-2=0
4.-2≤a≤2
5.x+y-3=0,x-y-3=0
,圆的标准方程概念、知识点及练习题